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Abstract

We introduce a framework to study targeted policy interventions. Agents differ both in their

likelihood of and payoff from interaction, exert externalities through interaction, and can alter

their interaction rates at a cost. A policy maker selects a subset of agents to alter their interac-

tion rates at no cost (a selection policy). We fully characterize both the second- and first-best

selection policies; that is, when costly interaction choices are either voluntary or mandatory.

Our main result introduces the concept of normative risk compensation, which describes how

the second-best selection policy internalizes spillovers to a lesser (greater) extent than the first-

best when externalities are negative (positive), in order to manipulate voluntary incentives. We

apply our results to various settings including vaccine allocation and information aggregation.

JEL Classification: H4, D62. Keywords: Risk compensation, allocative externalities,

targeted interventions.

1 Introduction

In many settings, authorities design targeted interventions for diverse groups of interacting agents.

Consider viral contagion within a population, wherein people differ both in their rate of contact

with others as well as the severity of their symptoms conditional on contracting the virus. They

can take costly measures to avoid potentially harmful interactions, while a policy maker allocates a

limited supply of vaccines. Alternatively, consider a group of agents who can spend time and effort

to engage on a social media platform. They differ in how connected they are within the platform,
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as well as how much they value interaction. The platform can select who to “promote”, for instance

in the allocation of “blue check” marks on Twitter.

In each case, a designer must decide who to target. During the COVID-19 pandemic, many

authorities first vaccinated those most at risk conditional on an infection.1 On the other hand, many

advocated targeting those most at risk of contracting and spreading an infection, so-called “super-

spreaders” to achieve “herd immunity”, an approach echoed by the literature on targeting central

nodes in networks.2 The trade-off underlying the debate between these two approaches is between

prioritizing direct benefits to those vaccinated versus indirect benefits to those not vaccinated. A

crucial determinant of the value of these indirect benefits is how unvaccinated people respond. For

example, a person’s willingness to self-isolate or wear a mask depends on the risks they face, and

therefore on the vaccination policy and implied equilibrium choices of others.

This connection between targeted interventions and voluntary behavior is our central focus.

We develop a framework with three central ingredients. First, agents differ along two separate

dimensions — their exposure type indexes their likelihood of interacting and the externality they

exert on other interacting agents, and their payoff type indexes their payoff from interacting. Second,

agents can incur costs to adjust their likelihood of interacting. Third, a benevolent policy maker

can select a subset of agents who no longer need to pay these adjustment costs. Our analysis is

general and speaks both to situations in which an agent’s interaction imposes a negative externality

(Sections 4 and 6.1) or a positive externality (Sections 5 and 6.2) on other interacting agents, as

with viral contagion and social media engagement, respectively.

We develop the concept of an exposure elasticity to characterize the extent to which policy

prioritizes based on exposure type rather than payoff type, and thus indirect rather than direct

benefits. Our primary interest lies in showing precisely how this prioritization should take into

account its effects on voluntary incentives.

Our main findings compare the exposure elasticity in the first-best and the second-best policies

— respectively, when voluntary incentive constraints are relaxed or respected — and thus uncover

the role of incentives. In general, optimal policy places more weight on exposure type than payoff

type because they both contribute to an agent’s private benefits from being selected by the policy,
1See for instance the European Union’s guidelines: https://tinyurl.com/y8n2ayrh.
2See Pastor-Satorras and Vespignani (2002), Shaw and Schwartz (2008), Gross et al. (2006), and Epstein et al.

(2008). In contrast to most countries, Indonesia explicitly aimed to achieve herd immunity: see https://tinyurl.
com/y8vvpfkm and https://tinyurl.com/yybj498g.
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but only the former determines the spillover benefits to others. In the case of negative externalities,

the second-best policy has a lower exposure elasticity than the first-best (Theorem 1), and so does

not prioritize exposure so heavily. Conversely, with positive externalities, the second-best policy

has a greater exposure elasticity than the first-best (Theorem 2). Intuitively, vaccinating super-

spreaders reduces the risk of contagion, which encourages the unvaccinated to stop self-isolating,

ultimately undermining the aim of reducing contagion. Conversely, promoting highly-connected

users of a social media platform increases the interaction incentives of unpromoted users, which

furthers the goal of increasing interaction.

An important corollary is that it is relatively efficient to allocate vaccines with a market clearing

price, i.e., to those with the highest private benefit, if behavior is voluntary rather than mandatory

because in that case, super-spreaders do not internalize that their vaccination reduces risk for

others, but also do not internalize that their vaccination inefficiently discourages self-isolation. On

the other hand, it is particularly inefficient to allocate Twitter blue check marks with a price if

behavior is voluntary because in that case, highly-connected users do not internalize that their

promotion provides benefits to other users and encourages more participation on the platform.

Our findings speak to the literature on risk compensation, which argues that mitigating the

downsides to risky actions might not reduce the prevalence of adverse outcomes if outweighed

by greater risk-taking behavior. Risk compensation has been well-documented, both theoretically

and empirically.3 Previous work studies the concept from a positive viewpoint, typically via a

comparative static on the efficacy of a certain intervention or technology; a more effective technology

might lead to overcompensating risk-taking by agents, thus counteracting its desirability.

We offer three distinct contributions to this literature. First, we take a normative approach,

and show precisely how risk compensating behavior affects the design of a targeted intervention. As

such, we term the phenomenon normative risk compensation. Second, we connect risk compensation

to our novel exposure elasticity concept, which crucially relies on hitherto unexplored heterogeneity

in both interaction rates and payoffs. Finally, we establish how normative risk compensation has

a natural converse in settings with positive externalities in which agents’ choices are strategic

complements, broadening the scope of applications.
3Geoffard and Philipson, 1996, Greenwood et al., 2019, and Kremer, 1996 study risk compensating behavior in

public health management, Ehrlich and Becker, 1972 in a moral hazard setting, and Talamás and Vohra, 2020 and
Hoy and Polborn, 2015 more generally.
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Beyond normative risk compensation, we derive additional qualitative insights into optimal

policies. We show that the second-best policy is non-monotone—agents with intermediate payoffs

from interaction are selected most heavily—whereas the first-best is monotone (Corollaries 2 and

5). With negative externalities and strategic substitutes, such agents interact too much relative

to the social optimum, and are particularly costly to society when not selected. With positive

externalitites and strategic complements, such agents interact too little. Finally, in Appendix A,

we extend our results to a more general model with heterogeneous interaction adjustment costs.

Our paper relates to the broad literature on targeted interventions within groups of heteroge-

neous agents. For example, Pastor-Satorras and Vespignani (2002), Shaw and Schwartz (2008),

Gross et al. (2006), and Epstein et al. (2008) study targeted interventions on random / adaptive

networks. A key difference is that they abstract from the effects of equilibrium behavior on opti-

mal policy. Alternatively, Jehiel and Moldovanu (2001), Jehiel et al. (1996), Ostrizek and Sartori

(2022), and Akbarpour et al. (2022) study mechanism design problems with allocative externalities,

wherein which agent receives the good affects the utilities of the agents who do not receive it, and

thus their incentives to report their type truthfully. In the context of COVID-19, Akbarpour et

al. (2022) show that requiring agents to pay for vaccines helps screen agents and improve both

efficiency and equity. These papers focus on eliciting private information from agents, whereas we

suppose the policy maker has perfect information, and study how agents respond to the effects of

policy on the aggregate environment. Finally, our analysis bears some similarity to problems of

optimal taxation with externalities (Akcigit et al., 2022; Piketty et al., 2014).

Beyond the question we seek to address, the tractability of our framework makes it a useful input

into future applied work, as suggested by the applications we explore in Section 6. From a modeling

perspective, we draw inspiration from random search, network models, and aggregative games (see

Section 2.4 for a detailed discussion). Galeotti et al. (2020) and Ballester et al. (2006) explicitly

consider incentives and behavior in network models, but abstract from endogenous participation as

well as an explicit comparison between first- and second-best policies. Demange (2016) introduces a

“threat index” that measures the marginal spillover exerted by firms in a financial network using a

multiplier approach similar to ours (Proposition 2). Unlike in her setting, we can fully characterize

these spillover effects by employing a tractable aggregative game approach. Finally, in the search

tradition, the model in Farboodi et al. (2020) is similar to ours, except that an agent’s interaction
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rate depends on neither the types nor decisions of other agents.

2 Model

A unit measure of agents are indexed by two-dimensional type (x, y) ∈ [0, 1]2 drawn from a contin-

uously differentiable distribution F with full support and density f . We call x an agent’s exposure

type, and y an agent’s payoff type. Each agent faces the possibility of interacting with others. This

likelihood is governed by their choices, the choices of others, and the intervention of a policy maker.

More precisely, agents make interaction choices σ : [0, 1]2 → [0, 1] where σ(x, y) is the probability

that a type (x, y) agent chooses to interact, and the policy maker designs a selection policy v :

[0, 1]2 → [0, 1] where v(x, y) is the probability that a type (x, y) agent is selected. Up to a fraction

β ∈ (0, 1) of agents can be selected:

∫ 1

0

∫ 1

0
v(x, y)f(x, y) dxdy ⩽ β. (1)

Type (x, y) receives an interaction payoff with probability equal to the product of their interaction

probability Σ(σ(x, y) | x, v(x, y)) and the aggregate interaction probability λ, where the former is a

function (described in detail below) of their interaction choice, exposure type, and whether they

are selected, and the latter is

λ ≡ α

∫ 1

0

∫ 1

0
Σ(σ(x, y) | x, v(x, y))f(x, y) dxdy, (2)

where α ∈ (0, 1] is an exogenous parameter. To provide further details, it is convenient to define

two broad cases that ultimately form the backbone of the analysis.

2.1 Negative Externalities / Strategic Substitutes

In this case, interaction payoffs are negative, each agent can pay to avoid interaction, and selecting

an agent allows them to do so at zero cost. Type (x, y)’s interaction probability is

Σ(σ(x, y) | x, v(x, y)) = x(1− v(x, y))σ(x, y).
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If they are not selected (v(x, y) = 0), then they receive a negative interaction payoff −by with

probability xλ if they choose to interact (σ(x, y) = 1), and a negative payoff (the isolation cost)

−xc if they choose to isolate (σ(x, y) = 0), where b, c > 0 are exogenous parameters. If selected

(v(x, y) = 1), they receive 0 regardless of their interaction choice. Their ex-ante utility is

u(x, y) = (1− v(x, y))
[
σ(x, y) · (−xλby) + (1− σ(x, y)) · (−xc)

]
. (3)

Crucially, selecting an agent both protects them from losses and prevents them from exerting

negative externalities on others: if v(x, y) = 1, then Σ(σ(x, y) | x, v(x, y)) = 0, so type (x, y) does

not contribute to λ.

2.2 Positive Externalities / Strategic Complements

Here, interaction payoffs are positive, each agent can pay to interact, and selecting an agent allows

them to do so at zero cost. Type (x, y)’s interaction probability is

Σ(σ(x, y) | x, v(x, y)) = x[(1− v(x, y))σ(x, y) + v(x, y)].

If they are not selected (v(x, y) = 0), then they must incur the negative payoff −xc if they choose

to interact (σ(x, y) = 1), in which case they receive a positive interaction payoff by with probability

xλ, where b, c > 0. If they are not selected and choose to isolate (σ(x, y) = 0), they receive a

payoff 0. If they are selected (v(x, y) = 1), then they receive the positive interaction payoff by with

probability xλ regardless of their interaction choice. Their ex-ante utility is

u(x, y) = (1− v(x, y))σ(x, y) · (xλby − xc) + v(x, y) · (xλby). (4)

Now, selecting an agent saves them from paying to interact, and imposes positive externalities

on others: if v(x, y) = 1, then Σ(σ(x, y) | x, v(x, y)) = 1, so type (x, y) contributes to λ.
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2.3 Welfare

In all cases, the policy maker’s objective function is utilitarian welfare:

W =

∫ 1

0

∫ 1

0
u(x, y)f(x, y) dxdy, (5)

where u is defined in equations (3) and (4).

2.4 Model Discussion

We cast our model at an abstract level to allow interpretations that vary by application, as we

highlight in Section 6. For instance, in the case of negative spillovers / substitutes, selection can be

viewed either as isolating agents at zero cost, or as allowing an agent to interact without consequence

to herself or others. The probability of an interaction payoff for non-selected agents, xσ(x, y)λ, can

be unpacked in various ways. One natural setting is where agent (x, y) receives an opportunity to

enter an interaction pool with probability x, accepts this opportunity with probability σ(x, y), and

conditional on entering the pool, interacts with a probability that scales with the pool’s size, λ,

as in Section 6.1. Alternatively, as in Section 6.2, x can index the strength of payoff externality

exerted by type (x, y) on those who interact, rather than the contribution of type (x, y) to the

quantity of aggregate interaction.

An agent’s payoff is a function of idiosyncratic variables—their type, behavior, and whether

they are selected—and a single aggregate statistic λ. The model is thus an aggregative game.4

Nonetheless, the marginal distribution F (·, y) models interaction in the spirit of random graphs;

F (·, y) resembles the degree distribution G(·) of a random graph, where G(x) is the probability of

drawing at most x nodes (partners). We can easily generalize the model so that the probability

an agent receives an interaction payoff is any continuous and strictly increasing function of λ. The

parameter α allows for some flexibility on this front, and can be interpreted as a matching friction.

We can generalize the model so that the direct cost from interaction choice σ for an agent with

exposure type x is c(x, σ), which is weakly increasing in x and strictly increasing in σ. In our

baseline model, c(x, σ) = xσc, which implies that interaction choices do not depend on exposure

types, and so yields an easy to understand characterization of optimal selection policies. Our main
4See Corchón 2021 for a survey and definition.
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results hold as long as c(x, σ) is linear in σ so that agents choose σ ∈ {0, 1}. Intuitively, optimal

selection policies for interacting agents in the case of negative externalities / strategic substitutes

and for non-interacting agents in the case of positive externalities / strategic complements only

depend on the cost function c(·, ·) insofar as it determines the response of agents to changes in the

aggregate interaction probability. This response depends quantitatively on the particular choice of

cost function, but the sign of its effect on welfare, which is key for our results, does not. Finally,

in Appendix A, we consider the case in which agents draw idiosyncratic costs c.

3 Policy Examples

Before solving for optimal policies, we define some natural policies, which form the building blocks

for the subsequent analysis. We focus on pure selection policies where v(x, y) ∈ {0, 1} for all

(x, y) ∈ [0, 1]2, which we later prove include the optimal policies. We define properties of policies

that hold on all of [0, 1]2, but later, we discuss cases in which these properties hold only on a subset.

Definition 1. A policy v is monotone if v(x, y) = 1 implies that v(x′, y′) = 1 for all (x′, y′) such

that x′ ⩾ x and y′ ⩾ y.

Definition 2. A policy v is an x-policy if v(x, y) = 1 implies that v(x′, y′) = 1 for all x′ ⩾ x,

y′ ∈ [0, 1]. A policy v is a y-policy if v(x, y) = 1 implies that v(x′, y′) = 1 for all y′ ⩾ y, x′ ∈ [0, 1].

A policy v is an xy-policy if v(x, y) = 1 implies v(x′, y′) = 1 for all (x′, y′) such that x′y′ ⩾ xy.

Monotone policies prioritize agents with higher exposure and payoff types, whereas x-, y-, and

xy- policies give priority to a particular dimension of agents’ types. x-policies select the most

interactive or connected agents and arise naturally in models that study targeted interventions

in networks, and where impacting interaction is the sole objective.5 By contrast, y-policies are

commonplace in practice, for instance in the allocation of vaccines to mitigate pandemics.6 Finally,

xy-policies select agents with the highest expected interaction payoff conditional on choosing to

interact, which depends only on x and y through xy.
5See Pastor-Satorras and Vespignani, 2002, Shaw and Schwartz, 2008, Gross et al., 2006, and Epstein et al., 2008

and Akbarpour et al., 2020.
6In the context of the COVID-19 pandemic, the European Union guidelines state that when vaccine supply is low,

priority should be given to the most vulnerable. See https://tinyurl.com/y8n2ayrh.
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Figure 1: Exposure Premium Policy
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y r
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y∗

Example of a threshold policy that exhibits an exposure premium. Solid line: policy threshold function g(y). Dotted
line: xy-policy threshold function h(y) = r/y. Grey shaded area: v(x, y) = 1. The exposure elasticity of g(·) at y∗ is
negative 1 times the ratio of the slope of g(·) to the slope of h(·) at y∗.

Definition 3. A policy v(·, ·) is a threshold policy if there exists an threshold function g : [0, 1] →

[0, 1] such that v(x, y) = 1 if and only if x ⩾ g(y).7

For example, an x-policy is characterized by a constant threshold function. An xy-policy is

characterized by the threshold function g(y) = r/y, for some r ⩾ 0; for each y, the policy selects

any agent with x ⩾ r/y, and so with xy ⩾ r. We often refer to a threshold policy v(·, ·) by its

threshold function g(·). Figure 1 displays an example of a threshold policy.

Much of our analysis will focus on optimal selection policy for agents who would choose to

interact in the negative externality case, or choose not to interact in the positive externality case,

i.e., make the choice that is worse for others. Thus, since xy represents the private value of selecting

such an agent with type (x, y), xy-policies ignore the spillovers agents exert through interaction,

which scale only with their exposure type x. We introduce the exposure elasticity to capture the

extent to which a policy places a premium on agents’ exposure types and thus on spillovers:

Definition 4. Let

ε(y) ≡ y

g(y)

dg(y)

dy

7We can similarly define a threshold policy in terms of a threshold for y as a function of x, which we can use in
the following definitions. However, optimal policies can only be characterized by thresholds for x as functions of y.
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denote the exposure elasticity of a threshold policy characterized by g(·).

To develop the exposure elasticity concept further, suppose there is a threshold policy with

differentiable threshold function g(·) and for a given y∗, consider the alternative xy-policy with

threshold function h(·) that intersects g(·) at y∗, i.e., h(y) = r/y, where r = g(y∗)y∗. Simple

algebra shows that −ε(y∗) is the ratio of the slope of g(·) to the slope of h(·) at y∗:

ε(y∗) = −g′(y∗)/h′(y∗).

Thus, the exposure elasticity ε(y) measures how flat the slope of the policy threshold function is

relative to an xy-policy, and thus how much more willing it is to substitute x for y. In particular,

an xy-policy has ε(·) = −1, an x-policy has ε(·) = 0, and a y-policy has ε(·) = −∞.

Definition 5. A policy v(·, ·) exhibits an exposure premium if it is characterized by a threshold

function g(·) such that ε(y) > −1 for all y ∈ [0, 1].

If a policy exhibits an exposure premium, then agents with higher exposure types x are selected

with lower levels of xy. Such a policy places a premium on an agent’s exposure type x relative

to their payoff type y, and ε(y) quantifies this premium precisely. Figure 1 displays an exposure

premium policy, and shows that the slope of the policy threshold is steeper than the corresponding

xy-policy at one particular point (g(y∗), y∗), which implies that ε(y∗) > −1.

4 Optimal Policies I: Negative Externalities / Substitutes

In this section, we study optimal policy in the case in which interaction payoffs are negative, and

so an agent’s choice to interact imposes negative externalities on others who do the same. As such,

interaction choices are strategic substitutes. We consider two types of optimal policies: the second-

best policy in which the policy maker chooses selection, v(·, ·), taking as given that interaction

choices σ(·, ·) are individually optimal, and the first-best policy in which the policy maker jointly

sets selection and interaction, so that σ(·, ·) need not be individually optimal. We denote variables

in the second-best with subscript s and in the first-best with subscript f .

Before presenting the policy maker’s problem, we state the following lemma that we can restrict

attention to interaction choices characterized by an interaction threshold. If an agent’s payoff type y
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is below the threshold, then they interact with maximal probability, and we say they are interacting.

If it is above the threshold, then they never interact, and we say they are isolating.

Lemma 1. Fix a selection policy v(·, ·). Let σs(·, ·) and σf (·, ·) be the individually and socially

optimal interaction choices, respectively. For i ∈ {s, f}, there exists an interaction threshold y∗i

such that σi(x, y) = Iy⩽y∗i
, where I is the indicator function.8 Under individually optimal behavior,

there is a unique equilibrium: the interaction threshold is y∗s = c/(λb) > 0, where λ > 0 is the

equilibrium aggregate interaction probability given by equation (2) as a function of v(·, ·) and y∗s .9

Intuitively, the private cost of isolating, xc, scales with an agent’s exposure type x, and the

private cost of interacting, xλby, scales with an agent’s exposure type x and payoff type y. Thus,

for individually optimal interaction choices, x is irrelevant, and an agent isolates if y is sufficiently

high. Socially optimal interaction choices also follow a payoff type threshold rule because the

only difference is that the social cost of interacting includes an additional effect that scales with

the agent’s x but not their y: interacting increases the aggregate interaction probability, which

increases the likelihood other interacting agents get negative payoffs. Finally, the equilibrium

under individually optimal behavior is unique because interaction choices are strategic substitutes.

The policy maker’s problem is to choose an interaction threshold y∗i , a selection policy vi(·, ·),

and an aggregate interaction probability λi to maximize the Lagrangian:

Li =Wi + γ1,i

(
β −

∫ 1

0

∫ 1

0
vi(x, y)f(x, y) dxdy

)
+ γ2,i

(
y∗i −

c

λib

)
+ γ3,i

(
λi − α

∫ y∗i

0

∫ 1

0
(1− vi(x, y))xf(x, y) dxdy

)
, (6)

where i ∈ {s, f} denotes the second- or the first-best, the constraints are the supply constraint

(equation (1)), the incentive compatibility constraint derived from Lemma 1, and the equilibrium
8A measure 0 of agents have y = y∗

i , so their behavior is not relevant for aggregate outcomes or optimal policy.
9We use the concept of a Wardrop equilibrium ((Wardrop, 1952)), the natural analogue of Nash equilibrium for

anonymous large games: given the aggregate distribution over actions, each agent best responds, while the distribution
itself is consistent with individual optimization.
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aggregate interaction probability constraint derived from equation (2)10, and welfare is

Wi = −
∫ y∗i

0

∫ 1

0
(1− vi(x, y))xλibyf(x, y) dxdy −

∫ 1

y∗i

∫ 1

0
(1− vi(x, y))xcf(x, y) dxdy. (7)

The only difference between the second- and the first-best problems is that the incentive compati-

bility constraint need not hold in the first-best, and so we set γ2,f = 0. The following proposition

characterizes optimal policy.

Proposition 1. Optimal selection policy for i ∈ {s, f} denoting the second- or first-best is charac-

terized by a threshold function gi(·) such that

gi(y) =


g∗i y ∈ (y∗i , 1]

min
{

γ1,i
λiby+γ3,iα

, 1
}

y ∈ [0, y∗i ],

where

g∗i ≡ min
{γ1,i
c
, 1
}
,

and γ1,i, γ3,i are strictly positive. The first-best interaction threshold is y∗f = (c − γ3,fα)/(λfb),

where y∗f and λf are strictly positive.

Figure 2 illustrates the first- and second-best policies. The threshold function gi(·) tells us the

exposure type of the marginal selected agent for each payoff type: an agent with payoff type y

is selected if and only if their exposure type x is greater than gi(y). The benefit of selecting an

agent with type (gi(y), y) on the threshold must equal the cost, which is the Lagrange multiplier on

the supply constraint, γ1,i. Above y∗i , non-selected agents isolate, so the benefit of selecting type

(x, y) is avoiding the cost of isolation, xc. Below y∗i , non-selected agents interact, so the benefit

of selecting type (x, y) is the private value from isolating them as well as the spillover value from

reducing the aggregate interaction probability λi, and therefore the likelihood of a negative payoff

for other interacting agents. The former is xλiby and the latter is xγ3,iα because γ3,i is the social

benefit of reducing the aggregate interaction probability.
10We allow y∗

s to be greater than 1 so that the incentive compatibility constraint always holds exactly. For all
equations to be well-defined, we can extend the density f to be defined on all of R2, and equal to 0 outside of [0, 1]2.
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Figure 2: Optimal Policies

x

y g∗f

y∗f

ŷf

x = gf (y)

x

y g∗s

y∗s

x = gs(y)

xy =constant

Left panel: first-best policy. Solid line: gf (y) = x. Shaded area: vf (x, y) = 1. ŷf : individually optimal interaction
threshold. Right panel: second-best policy. Solid line: gs(y) = x. Dashed line: xy-policy intersecting the optimal
policy, demonstrating the exposure premium. Shaded area: vs(x, y) = 1. Dark shaded area: additional selection due
to inefficient interaction choices.

4.1 Normative Risk Compensation

We now use our purpose-built exposure elasticity measure εi(·) (Definition 4) to characterize the

extent to which optimal selection policy for interacting agents prioritizes exposure types x over

payoff types y. Moreover, we demonstrate the dependence of εi(·) on voluntary interaction behavior.

Using the expression for the threshold function in Proposition 1, if y < y∗i and gi(y) < 1, then

the exposure elasticity is the private benefit of selecting type (x, y) relative to the social benefit:

εi(y) = − xλiby

xλiby + xγ3,iα
. (8)

As discussed after Proposition 1, the social benefit in the denominator consists of the private benefit,

which scales with xy, and the spillover benefit, which scales only with x. If the spillover benefit

is 0, then the elasticity is −1, so the policy is an xy-policy. As the spillover benefit increases, the

elasticity shifts toward 0, so the policy exhibits an exposure premium (Definition 5)—it prioritizes

exposure type x as well as private benefits xy, and thus favors exposure type x over payoff type y.

It is useful to first consider a baseline that eliminates the role of voluntary behavior: the optimal

selection policy taking as given interaction choices σ(·, ·). In this case, if agents with payoff type y
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interact and are selected with x > g(y), where g(y) < 1, then the exposure elasticity is

E(y, ỹ) = −y/(y + ỹ), (9)

where ỹ is the interaction-weighted average payoff type:

ỹ ≡ E(y | σ(x, y) = 1, v(x, y) = 0) =

∫ 1
0

∫ 1
0 yx(1− v(x, y))σ(x, y)f(x, y) dxdy∫ 1

0

∫ 1
0 x(1− v(x, y))σ(x, y)f(x, y) dxdy

. (10)

The private benefit is reducing negative interaction payoffs for the selected agent, which depends

on their payoff type y, and the spillover benefit is reducing negative interaction payoffs for others,

which depends on their average payoff type ỹ. Thus, the lower is the selected agent’s payoff type

relative to the average of those it would interact with, the less valuable are private benefits relative

to spillover benefits, and so the closer the exposure elasticity is to 0 rather than −1.

Returning to optimal policy allowing equilibrium variables to respond, we have our main result:

Theorem 1. Let ỹs and ỹf satisfy (10) in the second- and first-best optimal policy, respectively.

If y < y∗f and gf (y) < 1, then εf (y) = E(y, ỹf ) > −1.

If y < y∗s and gs(y) < 1, then −1 < εs(y) ⩽ E(y, ỹs), and the inequality is strict if y∗s ⩽ 1.

Theorem 1 contains two results. First, both the first- and second-best policies exhibit exposure

premia among interacting agents, i.e., εi(·) > −1. Thus, as in the baseline above, optimal policy

prioritizes exposure type x over payoff type y in that it selects high x agents at lower levels of xy.

Second, the second-best exhibits a weaker exposure elasticity than the first-best, for a given

average payoff type ỹ among those interacting, i.e., if behavior is voluntary, then exposure does

not receive such high priority. Since the first-best optimally sets both interaction choices and

selection policy, an envelope argument implies that the marginal spillover benefit of selection takes

interaction choices as given. Thus, the first-best selection policy exhibits an exposure elasticity of

E(y, ỹf ), as in the baseline above. On the other hand, in the second-best, the spillover benefit is

mitigated by the equilibrium response of agents to changes in the risk they face; selecting some

inadvertently encourages the inefficient interaction of others.

Taking the two results together, the second-best policy sits between one that considers only

private benefits and one that accounts for spillovers but takes agent behavior as given.
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Normative risk compensation is the effect of the anticipated response to policy on the second-best

policy, which drives the second result in Theorem 1. To quantify this effect and understand it more

precisely, we compute the marginal benefit γ3,i of decreasing the aggregate interaction probability

λ, which determines the spillover benefit of selection and, from (8), the exposure elasticity.

Proposition 2. For i ∈ {s, f} denoting the second- or first-best, the marginal benefit γ3,i of reducing

the aggregate interaction probability is given by

γ3,fα = λfbỹf γ3,sα =
λsbỹs − Ω1

1 + Ω0
,

where

Ω0 ≡
y∗sα

λs

∫ gs(y∗s )

0
xf (x, y∗s) dx Ω1 ≡

y∗sα

λs

∫ g∗s

gs(y∗s )
(γ1,s − xc)f (x, y∗s) dx,

are weakly positive and strictly so if and only if y∗s ⩽ 1.

Ω0 and Ω1 capture the offsetting effect of equilibrium behavior on the marginal spillover benefit

when behavior is voluntary. As the aggregate interaction probability falls, they count agents who

were non-selected and isolating but choose to interact and, respectively, remain non-selected or

become optimally selected. Crucially, this response lowers welfare because agents do not internalize

the negative externalities of interacting. If Ω0 and Ω1 are larger, then spillovers are weaker relative

to private benefits, so priority in the second-best policy shifts from exposure type to payoff type.

4.2 Further Results

Optimal Policy for Isolating Agents – An immediate corollary of Proposition 1 is that optimal

selection policy exhibits an exposure premium among agents who would isolate if not selected.

Corollary 1. For i ∈ {s, f}, if y∗i < 1, then for all y > y∗i , εi(y) = 0.

Among the isolating, optimal selection policy not only exhibits an exposure premium, but is an

x-policy, i.e., is invariant to payoff type y. The benefit of selecting such an agent is only in avoiding

the isolation cost, which scales with their exposure type, but not their payoff type. Together with

Theorem 1, it follows that optimal selection policies exhibit exposure premia both for interact-

ing and isolating agents. Moreover, the second-best policy is once again between the policy that

considers only private values and the policy that takes agent behavior as given, which are equal here.

15



Non-monotonicity – Another immediate corollary of Proposition 1 is that if some non-selected

agents isolate in the second-best, i.e., y∗s < 1 (guaranteed if c/(αb) is sufficiently small), then the

selection policy is non-monotone, whereas the first-best selection policy is always monotone.

Corollary 2. If y∗s < 1, then the second-best threshold function gs(·) achieves its unique minimum

at y∗s . The first-best threshold function gf (·) is continuous and decreasing.

The second-best policy aggressively selects agents with intermediate payoff types (y at or just

below y∗s—the dark shaded area in the right panel of Figure 2). Whereas those with the highest

payoff types efficiently isolate and those with the lowest efficiently interact, intermediate agents

interact though they should isolate. They are thus particularly costly to society when non-selected.

Put another way, comparing the isolating and the interacting, optimal policy focuses on the latter

because agents over-interact relative to the social optimum. In the first-best, there is no reason

to target in particular either the interacting or the isolating because interaction choices are efficient.

Implementation – The first-best interaction policy can be simply implemented with a strictly

positive, flat interaction tax.

Corollary 3. The policy maker can decentralize the optimal interaction policy in the first-best with

a flat interaction tax equal to γ3,fα per interaction if y∗f < 1, and 0 otherwise.

The policy maker can implement the first-best interaction policy without observing agents’

types. That the tax is positive reflects that there exist agents—the dashed area in the left panel of

Figure 2—who would like to interact in the equilibrium induced by the first-best policy, but do not.

Prohibitive Costs – To highlight the role of behavior, consider the case in which the relative

cost of isolation is sufficiently high so that all agents interact (y∗ = 1) under any selection policy.11

The model reduces to one without the option to isolate, and thus second- and first-best policies are

identical. The optimal policy is monotone and exhibits an exposure premium, as in Figure 1.
11For example, if c/(αb) > 1, then even an agent facing maximal loss upon interacting would choose to do so.

Alternatively, if β is sufficiently large, then λ < c/b for any policy that satisfies the supply constraint.
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5 Optimal Policies II: Positive Externalities / Complements

In this section, we perform a similar analysis but in the case (Section 2.2) in which interaction

payoffs are positive, and so an agent’s choice to interact imposes positive externalities on others

who do the same. As such, interaction choices are strategic complements.

There are two important differences in the setup from Section 4. First, the sign of the equi-

librium aggregate interaction probability constraint in the Lagrangian is flipped: γ3,i is now the

marginal benefit of increasing λ, rather than decreasing it. Second, in the second-best problem, an

equilibrium always exists, but there may be multiple equilibria. We follow the literature on partial

implementation and henceforth allow the policy maker to select their preferred equilibrium.12

The proposition below, analogous to Lemma 1 and Proposition 1, characterizes optimal policy.

Proposition 3. For i ∈ {s, f}, let y∗i and gi(·) be defined as before (in Lemma 1 and Proposition

1) as functions of parameters and equilibrium objects in the equilibria induced by optimal policies.

1. In the first-best, agents interact if and only if y > y∗f (σf (x, y) = Iy>y∗f
), the selection policy is

characterized by the threshold function gf (·), and γ1,f and γ3,f are strictly positive.

2. In the second-best, agents interact if and only if y > y∗s , the selection policy is characterized by

the threshold function gs(·), and γ1,s and γ3,s are strictly positive.

The form of optimal policy is the same as in Proposition 1, except that agents now interact if

their payoff type is sufficiently high, rather than low. The intuition for optimal behavior and policy

is the same but flipped. For a type (x, y) agent’s interaction choice, the private cost of interacting is

now xc, the private cost of isolating is xλiby, and the social cost of isolating now includes the effect

on the aggregate interaction probability. When selecting an interacting type (x, y), the benefit is

now that they continue to interact but without paying the cost of doing so, xc. When selecting an

isolating type (x, y), the benefit is now the private value of allowing them to interact, xλiby, and

the spillover value of increasing the aggregate interaction probability, xγ3,iα.

The crucial difference from Section 4 is that normative risk compensation is reversed, as we see

in the analogue to Theorem 1, which now concerns the exposure elasticity for isolating agents.
12Alternatively, the preferred equilibrium is the unique strong Nash equilibrium of the induced game (Aumann,

1959). This follows directly by noting that a higher λ is Pareto-improving. Moreover, the results hold as long as
agents do not select an equilibrium in which an arbitrarily small measure can profitably deviate.
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Theorem 2. Let E(·, ·) be defined by (9), and let ỹs and ỹf be the interaction-weighted average

payoff type (defined in (10)) in the second- and first-best optimal policy, respectively.

If y < y∗f and gf (y) < 1, then εf (y) = E (y, ỹf ) > −1.

If y < y∗s and gs(y) < 1, then E (y, ỹs) ⩽ εs(y) < 0, and the inequality is strict if y∗s < 1.

Theorem 2 contains two results, like Theorem 1. The first is that both the second- and first-best

selection policies exhibit exposure premia among isolating agents, i.e., εi(·) > −1.

The second result is that the second-best now exhibits a stronger exposure elasticity than the

first-best, for a given average payoff type ỹ among those interacting, i.e., if behavior is voluntary,

then exposure receives higher priority. As before, an envelope argument implies that the first-best

policy has an exposure elasticity of E(y, ỹ), as in the baseline that takes interaction choices as

given. On the other hand, in the second-best, the marginal spillover benefit is now amplified by

the equilibrium response of agents; selecting some encourages the efficient interaction of others.

The second-best policy no longer sits between one that considers only private benefits and one

that accounts for spillovers but takes agent behavior as given. Instead, it prioritizes exposure even

more than what either policy would suggest.

To quantify normative risk compensation—the effect of the anticipated response to policy on

the second-best policy—we again compute the marginal benefit γ3,i of increasing the aggregate

interaction probability λ, which drives the spillover benefit of selection and so the exposure elasticity.

Proposition 4. For i ∈ {s, f} denoting the second- or first-best, the marginal benefit, γ3,i, of

increasing the aggregate interaction probability is given by

γ3,fα = λfbỹf γ3,sα =
λsbỹs +Ω1

1− Ω0
,

where Ω0 and Ω1, defined in Proposition 2, are weakly positive and strictly so if and only if y∗s ⩽ 1.

Ω0 and Ω1 now capture the amplifying rather than offsetting effect of equilibrium behavior on

the marginal spillover benefit when behavior is voluntary. As the aggregate interaction probability

rises, they count agents who would have chosen to isolate but now interact and were, respectively,

non-selected or selected. This response raises welfare because in this case, agents do not internalize

the positive externalities of interacting. If Ω0 and Ω1 are larger, then spillovers are stronger relative

to private benefits, so priority in the second-best policy shifts from payoff type to exposure type.
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5.1 Further Results

We briefly state the results analogous to Corollaries 1, 2, and 3.

Selection Policy for Interacting Agents – Optimal selection policy exhibits an exposure pre-

mium among agents who would interact if not selected.

Corollary 4. For i ∈ {s, f}, if y∗i < 1, then for all y > y∗i , εi(y) = 0.

Among the interacting, optimal selection policy not only exhibits an exposure premium, but is

an x-policy, i.e., is invariant to payoff type y. Together with Theorem 2, it follows that optimal

selection policies exhibit exposure premia both for interacting and isolating agents.

Monotonicity – If some non-selected agents interact in the second-best, i.e., y∗s < 1, then the

selection policy is non-monotone, whereas the first-best selection policy is always monotone.

Corollary 5. If y∗s < 1 then the second-best threshold function gs(·) achieves its unique minimum

at y∗s . The first-best threshold function gf (·) is continuous and decreasing.

The intuition is the same as with negative externalities / strategic substitutes, but now com-

paring the isolating and the interacting, optimal policy under voluntary behavior focuses on the

isolating because agents under-interact relative to the social optimum.

Implementation – The first-best interaction policy can be simply implemented with a strictly

positive, flat interaction subsidy.

Corollary 6. The policy maker can decentralize the optimal interaction policy in the first-best with

a flat interaction subsidy equal to γ3,fα per interaction if y∗f < 1, and 0 otherwise.

6 Economic Applications

6.1 Optimal Vaccination and Self-Isolation

A leading application for our analysis is optimal vaccine allocation, which maps to our results from

Section 4. People differ both in their natural rate of interaction, x, as well as their severity of

symptomatic response to the virus, y. Specifically, type (x, y) receives an interaction opportunity
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with probability x. Upon receiving the opportunity, they can pay a cost c to isolate and avoid

the interaction. If not, they contract the virus with likelihood λ, the product of the number of

other people interacting and the contagiousness of the virus, α.13 Upon contracting the virus, they

have an adverse reaction with probability y, which imposes cost b. A benevolent policy maker can

select a subset of people to vaccinate, who can interact without any risk of contracting the virus or

infecting others. We can also view the policy maker as spending a limited supply of resources to

advertise or dispense vaccines.

Given a limited vaccine supply, whom should the policy maker target? Our findings demonstrate

that the answer depends on whether lockdowns are mandatory (first-best) or voluntary (second-

best), and in the latter case, on the responsiveness of behavior to the riskiness of the environment.14

Whether isolation is mandatory or voluntary, among those not sufficiently vulnerable to isolate

if unvaccinated (y below y∗), the policy maker should weigh exposure x more heavily than vul-

nerability y to take into account the spillover risk highly exposed people impose on others when

they interact. If isolation is voluntary or not strictly enforced, then the policy maker should weigh

exposure less than if isolation were mandatory or than what holding fixed the behavior of the

unvaccinated would imply is optimal.

More specifically, normative risk compensation (Theorem 1), implies that if the policy maker

cannot enforce mandatory isolation, then they fear that the reduction in risk to the unvaccinated

due to vaccination will relax voluntary incentives to isolate, and thus encourage some to inefficiently

begin to interact. Such fears received widespread coverage in the case of COVID-19.15 In practice,

many authorities targeted vulnerability before exposure.16 Our analysis provides a novel rationale

for doing so: by vaccinating vulnerable people who do not interact heavily, the rate of contagion is

relatively unaffected for those who interact, thus preserving incentives to voluntarily isolate.

Among those sufficiently vulnerable to isolate, the policy maker should target people who

would like to interact frequently and therefore face particularly high isolation costs. If isolation

is voluntary, then between the two groups—the isolating and the interacting—the policy maker
13We interpret this expression as capturing the steady state of a dynamic disease model in which conditional on

leaving isolation, the likelihood of meeting a contagious person is increasing in the rate at which other people interact.
14One contributor is lockdown fatigue, a well-documented phenomenon whereby people fail to follow mandatory

lockdown rules. See https://tinyurl.com/y43jpxne in the case of COVID-19.
15See https://tinyurl.com/z7mh5bdx.
16The WHO official guidelines suggest giving vaccine priority to health-workers as well as those above a certain

age, as a proxy for vulnerability. See https://tinyurl.com/nanndxx5.
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should target the latter more aggressively: non-monotonicity (Corollary 2) implies that optimal

policy aggressively targets people with intermediate vulnerability—the most vulnerable that do

not isolate—because they would isolate if they internalized the risk their interaction imposes on

others. If isolation is mandatory, then the policy maker should not have any such preference for

targeting the interacting over the isolating.

Finally, if the policy maker simply sets a price and sells the vaccine supply, then vaccines are

allocated to people with the highest private benefit xy. Though this policy fails to internalize any

spillovers, it is less costly if isolation is voluntary rather than mandatory. In that case, private

benefits are closer to social benefits because spillover benefits are mitigated by risk compensation.

6.2 Information Aggregation

We next apply our results to a setting with information aggregation, which exhibits positive ex-

ternalities and strategic complementarities and thus utilizes our results from Section 5. Users of

a social media platform choose how much to engage with each other. They bear a cost to do so,

subsequently both contributing to and benefiting from collective discussion to learn about an issue

of common interest. Users differ both in their connectedness on the platform, x, as well as their

interest in learning about the issue, y. A policy maker that works for the platform can select a

limited subset of users to “promote” who no longer need to incur costs to engage. One interpreta-

tion is that promoted users are made more salient on the platform, and do not need to work to get

others to engage with them and convey information. An example is the verified blue check mark on

Twitter. Prior to 2022, Twitter allocated blue check marks to selected users for free, and a check

significantly promoted a user’s visibility (Hearn, 2017). After a change in ownership in 2022, the

blue check became a paid service, available to all.

Formally, users are interested in an uncertain state θ ∈ R over which they each hold a common

prior θ ∼ G(·). A type (x, y) user gets the opportunity to interact with probability x, which is free

if they are promoted, but costs c > 0 if not. If they interact, they receive a signal s ∼ π(· | θ, λ) that

induces a posterior distribution Ĝ(· | s, λ), where λ ≡ µ is the mass of other users interacting.17 The

signal structure is such that the precision of the posterior distribution is increasing in λ. Finally, we

suppose that each user has a preference for precision, specifically that their final payoff is λby. We
17We set α = 1 for simplicity. Otherwise, we can interpret α as scaling signal precision.
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can micro-found this setup further by supposing that users receive private signals, that interacting

users share their signals with each other, and that users must take an action the value of which

depends on estimating θ.18

Given that the policy maker can only promote a limited number of users, whom should they

target? For those not sufficiently interested in the issue at hand to engage if not promoted (y

below y∗), the policy maker should weigh connectedness x more heavily than interest in the issue

at hand y to take into account the spillover benefits highly connected users provide to others.

Moreover, if interaction is voluntary, then due to normative risk compensation (Theorem 2), the

policy maker should target connectedness even more so than under mandated engagement, or taking

the interaction choices of unpromoted users as given. Promoting the highly connected encourages

some users to engage who would otherwise inefficiently choose not to. Among those sufficiently

interested to engage, the policy maker should promote highly connected users that otherwise spend

a lot of effort interacting with others. If interaction is voluntary, then non-monotonicity (Corollary

5) implies that between the two groups—those putting in effort to interact and those not willing to

do so if not promoted—the policy maker should prioritize the latter because they do not internalize

the benefits their interactions create for others.

In stark contrast to the vaccination application, if interaction is voluntary then selling a fixed

amount of promotion, i.e., allocating it to users with the highest private benefit, is particularly

inefficient because spillover benefits are amplified by risk compensation: highly connected users

do not internalize that their promotion benefits other interacting users and encourages others to

interact. Applying our result to Twitter implies that decentralizing access to the blue check mark

through prices inefficiently targets users who are not so well connected—and thus do not provide

much value to others—but place a high private value on interacting with and learning from others.

Regarding implementation of the first-best interaction policy, suppose the policy maker can

effectively subsidize interaction, for instance through promotional advertising. Corollary 6 tells

us that the policy maker should subsidize non-interacting agents that place the highest value on

information (y just below y∗). Moreover, to push each such agent to interact, the policy maker

should advertise to an agent in proportion to their connectedness, i.e., advertising expenditures on

a type (x, y) agent scale with x. Even though more connected agents who would not otherwise
18See Herskovic and Ramos 2020 for a related example in the context of endogenous network formation.

22



interact face the highest private cost from putting in the effort to do so, their interaction generates

the most information and therefore the highest benefit to others. Indeed, Bond et al. (2012) and

Jones et al. (2017) document empirical evidence showing that Facebook positively distorted voter

turnout through targeted advertising during the 2010 US Congressional Elections and 2012 US

Presidential Elections. Their results confirm that network centrality was an important determinant

of the intervention’s effectiveness, specifically by encouraging others to participate more actively.

7 Conclusion

We introduced a novel framework to study targeted interventions within groups of interacting,

heterogeneous agents. Agents differ in their exposure to others, as well as their payoffs from

interaction, and can exert costly effort to change their interaction rates. We study two cases, in

which an agent’s interaction imposes negative externalities on other interacting agents, and so

interaction choices form strategic substitutes, and in which an agent’s interaction imposes positive

externalities on other interacting agents, and so interaction choices form strategic complements.

A benevolent policy maker designs a selection policy, which alters the interaction patterns of a

targeted subset of agents at zero cost, subject to a capacity constraint.

Our main insight, which we term normative risk compensation, demonstrates how the voluntary

interaction decisions of non-selected agents shape optimal selection policy. The policy maker always

takes into account spillovers and thus bases selection more on an agent’s exposure to others than

on their payoff from interaction. However, if interaction entails negative externalities, then relative

to what holding fixed the behavior of the non-selected would suggest is optimal, the policy maker

shifts selection away from highly exposed agents toward agents with particularly high negative

payoffs from interaction, and thus shifts priority from spillover benefits to the non-selected toward

private benefits to the selected. The opposite holds under positive externalities. In each case,

the inefficiency of voluntary agent behavior implies that one goal of selection policy should be to

manipulate non-selected agents’ values of interacting, and thus their behavior.

We detailed two leading settings to which our framework and results port well, and believe

many more applications can be studied using our model, or slight variations of it. For instance,

we can apply our results from the negative externalities / strategic substitutes case to a setting
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in which firms can pay to differentiate their products and thus escape competition, and a policy

maker can select a subset of firms to promote for free. Alternatively, in a congested traffic network,

agents can incur costs to avoid participating, and a policy maker can select a subset of agents that

are allowed to use an alternative uncongested route. Finally, we can apply our results from the

positive externalities / strategic complements case to a setting in which firms can pay to adopt a

technology that generates private profits as well as information for other adopters, and a policy

maker can select a subset of firms to use the technology for free.
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A Heterogeneous Costs

We extend our analysis in the negative externalities / strategic substitutes case to allow for heterogeneous,

unobservable, and independently drawn costs of isolation. (The insights for the positive externalities case

are similar.) Specifically, the isolation cost c is now drawn independently for each agent from a continuously

differentiable distribution H with support [0,∞], and density h. Crucially, the policy maker cannot condition

selection on an agent’s realized c.19 The first-best policy maker can condition interaction policy on c, which

facilitates a clear comparison with the second-best, and is feasible if the policy maker implements with a flat

interaction tax, as in Corollary 3.

This exercise serves several purposes. First, in many applications, agents face different isolation costs.

Second, it sheds light on the more general forces that drive the results in the baseline model. Finally, it is

qualitatively similar to an extension in which the total isolation cost is strictly convex rather than linear in

1− σ(x, y), which would also smooth the discontinuity in behavior at y∗.

The following proposition characterizes the first- and second-best policies.

Proposition A.1. Optimal interaction policies are characterized by isolation cost threshold functions

c∗s(y) = λsby c∗f (y) = λfby + γ3,fα,

such that, for i ∈ {s, f}, an agent with payoff type y interacts if and only if their cost draw satisfies c > c∗i (y).

Optimal selection policies are characterized by the threshold function

gi(y) = min

{
γ1,i

(1−H (c∗i (y))) (λiby + γ3,iα) +
∫ c∗i (y)

0
ch(c)dc

, 1

}
.

Optimal selection policies are qualitatively as before, but the intuition for isolating and interacting agents

are blended because type (x, y) now interacts or isolates depending on their isolation cost draw. Specifically,

the benefit of selecting an agent consists of two components: the benefit of reducing interaction, which scales

with the likelihood of interaction 1−H (c∗i (y)), and of avoiding expected isolation costs
∫ c∗i (y)

0
ch(c)dc.

On normative risk compensation, the following theorem is analogous to Proposition 2 and Theorem 1:

Theorem A.1. The marginal benefit, γ3,i, of reducing the aggregate interaction probability λ is given by

γ3,fα = λfbỹf γ3,sα =
λsbỹs

1 + α
∫ 1

0

∫ gs(y)

0
h (c∗s(y))xbyf(x, y) dxdy

,

19Were each agent’s cost observable, it would be irrelevant for interacting agents and would play the same role as
x for isolating agents, scaling their cost of isolation.
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where ỹi is the interaction-weighted average payoff type:

ỹ =

∫ 1

0

∫ 1

0
yx(1− v(x, y))H(c∗(y))f(x, y) dxdy∫ 1

0

∫ 1

0
x(1− v(x, y))H(c∗(y))f(x, y) dxdy

.

In the first-best, if gf (y) < 1, then the exposure elasticity is

εf (y) =
−
(
1−H

(
c∗f (y)

))
λfby(

1−H
(
c∗f (y)

))
λfb (y + ỹf ) +

∫ c∗f (y)

0 ch(c)dc
> −1.

In the second-best, if gs(y) < 1, then εs(y) > −1 and there exists a h̄s > 0 such that

εs(y) <
−
(
1−H

(
c∗s(y)

))
λsby(

1−H
(
c∗s(y)

))
λsb (y + ỹs) +

∫ c∗s(y)

0
ch(c)dc

if and only if
h
(
c∗s(y)

)
1−H

(
c∗s(y)

) < h̄s.

As in the baseline, the first- and second-best policies exhibit exposure premia, i.e., εi(·) > −1. Thus,

they prioritize exposure type x over payoff type y in that they select high x agents at lower levels of xy.

Due to normative risk compensation, as long as the hazard rate h(c∗s(y))
1−H(c∗s(y))

is sufficiently low, the second-

best exhibits a weaker exposure elasticity than the first-best, for a given interaction-weighted average payoff

type ỹ and expected isolation cost
∫ c∗(y)

0
ch(c)dc. The denominator in the expression for γ3,s reflects that as

the aggregate interaction probability falls, for each payoff type y, agents on the interaction cost threshold

c∗s(y) inefficiently shift from isolating to interacting.

The continuous distribution of isolation costs on which selection policy cannot condition complicates

the exposure elasticity expressions, and the comparison between the first- and second-best. In the first-best,

the exposure elasticity is the component of the private benefit of selection that scales with y—the expected

interaction payoff but not the expected isolation cost—relative to the social benefit, rather than the entire

private benefit relative to the social benefit. In the second-best, going against normative risk compensation,

the policy maker shifts priority from payoff type to exposure type because agents with high payoff types

interact less often, and agents over-interact relative to the social optimum. The final result in the theorem

follows because the strength of this force is increasing in the density h
(
c∗s(y)

)
, and the strength of normative

risk compensation is increasing in the probability that a payoff type y agent chooses to interact, 1−H
(
c∗s(y)

)
.

This last effect is the same force that drives non-monotonicity of the second-best selection policy in the

baseline model (Corollary 2), except now it is active for all payoff types, rather than just at the interaction
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Figure 3: Second-Best Policy with Heterogeneous Costs

x

y

x = g(y)

Solid line: policy threshold function. Shaded area: v(x, y) = 1.

threshold y∗s . The following corollary characterizes when it generates non-monotonicity in the general model.

Corollary A.1. aa

1. gf (·) is continuous and strictly decreasing.

2. gs(·) is continuous. g′s(y) ⩽ 0 if and only if

h (c∗s(y))

1−H (c∗s(y))
⩽ 1

γ3,sα
.

The second-best policy is continuous unlike in the baseline model because the distribution of isolation

costs is continuous. Nonetheless, it may still be non-monotone. The private benefit of selecting an agent is

strictly increasing in their payoff type as long as they interact with some probability. In the baseline model,

this is the only force for interacting agents. Now however, the spillover benefit of selecting an agent is strictly

decreasing in their payoff type because the probability of interaction is decreasing in payoff type. The first

effect scales with 1 −H (c∗s(y)), and the second scales with h (c∗s(y)), so which force dominates depends on

the hazard rate h(·)
1−H(·) . Figure 3 illustrates an example in which the hazard rate is strictly increasing.

A.1 Proofs of Proposition A.1, Theorem A.1, and Corollary A.1

Second-best – For the individually optimal interaction policy, note that a non-selected agent with type (x, y)

and cost draw c interacts if and only if the benefit of forgoing the isolation cost exceeds the expected negative
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interaction payoff, i.e., xc > xλsby. It follows that an agent with type (x, y) interacts with probability 1 −

H (c∗s(y)), and pays an expected isolation cost of
∫ c∗s(y)

0
cxh(c)dc, where c∗s(·) is as defined in the proposition.

Plugging in, the second-best policy maker maximizes the Lagrangian

Ls =Ws + γ1,s

(
β −

∫ 1

0

∫ 1

0

vs(x, y)f(x, y) dxdy

)
+ γ3,s

(
λs − α

∫ 1

0

∫ 1

0

(1− vs(x, y)) (1−H (c∗s(y)))xf(x, y) dxdy

)
,

where welfare is

Ws =

∫ 1

0

∫ 1

0

∫ ∞

0

xch(c)f(x, y)dcdxdy

−
∫ 1

0

∫ 1

0

(1− vs(x, y))

[
(1−H (c∗s(y)))xλsby +

∫ c∗s(y)

0

xch(c)dc

]
f(x, y) dxdy,

and where we call the second Lagrange multiplier γ3,s to facilitate comparison with the baseline model. The

same argument as for Lemma B.1 shows that γ1,s > 0. To see that γ3,s > 0, take the derivative of the

Lagrangian with respect to λs:

∂Ls

∂λs
=−

∫ 1

0

∫ 1

0

(1− vs(x, y)) (1−H (c∗s(y)))xbyf(x, y) dxdy

+ γ3,s

(
1 + α

∫ 1

0

∫ 1

0

(1− vs(x, y))h (c
∗
s(y))xbyf(x, y) dxdy

)
,

where the effects on welfare through changes in c∗s(·), holding fixed λs, net to 0. The First Order Condition

for λs, setting the derivative to 0, then implies that

γ3,s =

∫ 1

0

∫ 1

0
(1− vs(x, y)) (1−H (c∗s(y)))xbyf(x, y) dxdy

1 + α
∫ 1

0

∫ 1

0
(1− vs(x, y))h (c∗s(y))xbyf(x, y) dxdy

,

which is strictly greater than 0.

To find the optimal selection policy, take the derivative of the Lagrangian with respect to vs(x, y):

∂Ls

∂vs(x, y)
=

[
(1−H (c∗s(y)))xλsby +

∫ c∗s(y)

0

xch(c)dc− γ1,s + γ3,sα (1−H (c∗s(y)))x

]
f(x, y).

The derivative is strictly increasing in x and the second derivative with respect to vs(x, y) is 0. It follows

that the optimal policy is of the form in the proposition.

The remaining results for the second-best follow from taking the derivative of gs(·). In particular, if
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gs(y) < 1, then plugging in c∗s(y) = λsby, the exposure elasticity is

εs(y) =
− (1−H (c∗s(y)))λsby

(1−H (c∗s(y))) (λsby + γ3,sα) +
∫ c∗s(y)

0
ch(c)dc

[
1− h (c∗s(y))

1−H (c∗s(y))
γ3,sα

]
.

Since γ3,s > 0, it follows that the first fraction outside the brackets is negative but strictly greater than -1,

and that the difference inside the brackets is strictly less than 1. Thus, the exposure elasticity is strictly

greater than -1. Moreover,

εs(y) <
− (1−H (c∗s(y)))λsby

(1−H (c∗s(y)))λsb (y + ỹs) +
∫ c∗s(y)

0
ch(c)dc

if and only if

h (c∗s(y))

1−H (c∗s(y))
<

(1−H (c∗s(y)))
(

λsbỹs

γ3,sα
− 1
)

(1−H (c∗s(y))) (λsby + λsbỹs) +
∫ c∗s(y)

0
ch(c)dc

,

which is strictly positive since γ3,sα < λsbỹs.

First-best – The Lagrangian is as in the baseline model, but welfare is now

Wf =

∫ 1

0

∫ 1

0

∫ ∞

0

xch(c)f(x, y)dcdxdy

−
∫ 1

0

∫ 1

0

(1− vf (x, y))

[
σf (x, y)xλfby +

∫ ∞

0

(1− σ̃f (x, y, c))xch(c)dc

]
f(x, y) dxdy,

where σ̃f (x, y, c) is the probability that a non-selected agent with type (x, y) and cost draw c chooses to

interact, and σf (x, y) is the probability that a non-selected agent with type (x, y) interacts, integrating over

all possible cost draws: σf (x, y) =
∫∞
0
σ̃f (x, y, c)h(c)dc. To find the optimal interaction policy, take the

derivative of the Lagrangian with respect to σ̃f (x, y, c):

∂Lf

∂σ̃f (x, y, c)
= −(1− vf (x, y)) [xλfby − xc]h(c)f(x, y)− γ3,fα(1− vf (x, y))xh(c)f(x, y).

The second derivative with respect to σ̃f (x, y, c) is 0 and the first derivative is strictly increasing in c for

non-selected agents. It follows that an agent with type (x, y) interacts with probability 1−H
(
c∗f (y)

)
, and

pays an expected isolation cost of
∫ c∗f (y)

0
cxh(c)dc, where c∗f (·) is as defined in the proposition.

The same argument from Lemma B.1 shows that γ1,f > 0. To see that γ3,f > 0, take the derivative of

the Lagrangian with respect to λf :

∂Lf

∂λf
= −

∫ 1

0

∫ 1

0

(1− vf (x, y))
(
1−H

(
c∗f (y)

))
xbyf(x, y) dxdy + γ3,f ,

where the effects on the Lagrangian through changes in c∗f (·) net to 0. The First Order Condition for λf ,
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setting the derivative to 0, then implies that

γ3,f =

∫ 1

0

∫ 1

0

(1− vf (x, y))
(
1−H

(
c∗f (y)

))
xbyf(x, y) dxdy,

which is strictly greater than 0.

The remainder of the proof follows the same structure as for the second-best. In particular, if gf (y) < 1,

then plugging in c∗f (y) = λfby + γ3,fα yields the exposure elasticity.

B Proofs

B.1 Proof of Lemma 1

First, consider the individually optimal interaction choice of a type (x, y) agent, taking as given the aggregate

interaction probability λ. The benefit of isolating is avoiding the risk of interaction, which generates expected

payoff xλby, and the cost is xc. Thus, if y < c/(λb), then the agent maximizes the probability of interaction,

i.e., sets σ(x, y) = 1, and if y > c/(λb), then the agent sets σ(x, y) = 0. The agent is indifferent if y = c/(λb),

and there is a measure 0 of such agents, so their decision is not significant.

Next, take as given a selection policy v. The equilibrium under individually optimal behavior is unique

because if y∗s increases, then more agents interact, which implies a higher λ by its definition in equation (2),

and so a lower y∗s . In the unique equilibrium, y∗s > 0 and λ > 0 because in either case, λ = 0, which implies

that all agents optimally interact, and so λ > 0 since there is insufficient supply to select all agents (β < 1).

Finally, consider the socially optimal interaction policy. Suppose the policy does not follow a threshold

rule for a positive measure of agents, i.e., there exists an ϵ > 0 and a y′ such that there is a positive measure

of agents with y < y′ and σ(x, y) < 1− ϵ, and a positive measure of agents with y > y′ and σ(x, y) > ϵ. We

show that the planner can change the interaction policy to strictly improve welfare. The policy maker can

reduce σ(x, y) for a positive measure of agents with y > y′ and increase σ(x, y) for a positive measure of

agents with y < y′ such that the aggregate interaction probability λ is held fixed. Since λ is held fixed, each

agent’s expected payoff given σ(x, y) is held fixed. Thus, the effect of the policy change on welfare is the

integral across the affected agents of the changes in their individual payoffs from changing their probabilities

of interaction. This integral is the same as the effect on the aggregate interaction probability, except the

integrand for each agents is multiplied by (bλy − c)/α. Thus, since the effect on the aggregate interaction

probability is 0 and since the agents with an increase in σ(x, y) have a lower y than the agents with a decrease

in σ(x, y), it follows that the effect on welfare of the change is strictly positive.
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B.2 Proof of Proposition 1

First, we prove the last part of the proposition concerning the first-best interaction threshold, i.e., that

y∗f = (c− γ3,fα)/(λfb), where y∗f and λf are strictly positive.

Proof. The first derivative of the policy maker’s Lagrangian in equation (6) with respect to y∗f is

∫ 1

0

(xc− xλfby
∗
f )(1− vf (x, y

∗
f ))f(x, y

∗
f )dx− γ3,fα

∫ 1

0

(1− vf (x, y
∗
f ))xf(x, y

∗
f )dx

= (c− λfby
∗
f − γ3,fα)

∫ 1

0

(1− vf (x, y
∗
f ))xf(x, y

∗
f )dx,

where the first integral on the first line is the private effect of switching non-selected agents with y = y∗f

from isolating to interacting, and the second integral is the spillover effect that results from increasing the

equilibrium aggregate interaction probability λf . Recall that this expression holds even for y∗f ⩾ 1 if we

extend f to be defined on all of R2, and equal to 0 outside of [0, 1]2.

First, y∗f > 0 and λf > 0. If y∗f = 0 or λf = 0, then λf = 0, which implies that switching some

agents from isolating to interacting yields them strictly positive benefits (since λf = 0) and generates no

externalities (since no other agents are interacting). Non-selected isolating agents must exist if λf = 0

because there is insufficient supply to select all agents, i.e., β < 1. More formally, we will see in the proof of

Lemma B.3 that if λf = 0, then γ3,f = 0, which implies that the derivative above is strictly positive.

Now, suppose c − λfby
∗
f − γ3,fα < 0. If there exists an ϵ > 0 such that the measure of non-selected

agents with y ∈ [y∗f − ϵ, y∗f ] is 0, then the policy maker can decrease y∗f without any effect on welfare. If

there does not exist such an ϵ > 0, then the policy maker can strictly improve welfare by decreasing y∗f .

Finally, suppose c − λfby
∗
f − γ3,fα > 0. If there exists an ϵ > 0 such that the measure of non-selected

agents with y ∈ [y∗f , y
∗
f + ϵ] is 0, then the policy maker can increase y∗f without any effect on welfare. If there

does not exist such an ϵ > 0, then the policy maker can strictly improve welfare by increasing y∗f .

Thus, λfby∗f = c− γ3,fα, which must be strictly positive.

Next, the following lemma states that the policy maker always strictly prefers greater supply for selection.

Lemma B.1. For i ∈ {s, f}, the Lagrange multiplier on the supply constraint, γ1,i, is strictly positive.

Proof. We show that if the policy maker can select additional agents, then welfare strictly increases. It is

sufficient to show that holding fixed the rest of the selection policy, the policy maker can strictly increase

welfare. In the case of the first-best, we can also hold fixed the interaction policy. If there is a strictly

positive measure of isolating agents, then they can be selected for a strictly positive private benefit without

any effect on individually optimal interaction decisions. As such, welfare strictly increases. If there is not a

strictly positive measure of isolating agents, then since supply is insufficient to select all agents, i.e., β < 1,
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there is a strictly positive measure of non-selected interacting agents. Holding fixed interaction decisions,

selecting some of these agents gives them a strictly positive private benefit, and generates spillovers to the

interacting agents who remain non-selected that yield a strictly positive public benefit. Even in the second-

best with individually optimal interaction decisions, this increase in selection cannot lead to an increase in

the aggregate interaction probability because all non-selected agents are already interacting. If non-selected

agents respond by isolating, then their private value must go up, and there are further public benefits to the

non-selected that continue to interact.

We now prove a variation on the first part of Proposition 1. The function we define here is only different

from the one defined in the proposition if the Lagrange multiplier on the equilibrium aggregate interaction

probability constraint, γ3,i, is negative. We first show that the function takes the form defined here without

knowing whether γ3,i > 0, and then complete the proof of Proposition 1 by showing that γ3,i > 0.

Lemma B.2. Optimal selection policy for i ∈ {s, f} is characterized by a threshold function gi(·) such that

gi(y) =


g∗i y ∈ (y∗i , 1]

min
{

γ1,i

λiby+γ3,iα
, 1
}

y ∈ (y0,i, y
∗
i ]

1 y ∈ [0, y0],

where

g∗i ≡ min
{γ1,i

c
, 1
}

and

y0,i ≡ −γ3,iα
λib

.

Proof. First, consider type (x, y) with y > y∗i . The first derivative of the policy maker’s Lagrangian in

equation (6) with respect to vi(x, y) is

(xc− γ1,i)f(x, y),

where the first term is the benefit that the agent no longer has to pay the isolation cost, and the second

term is the selection supply cost. The second derivative is 0. It follows that the policy maker optimally sets

vi(x, y) = 1 if x > γ1,i/c and optimally sets vi(x, y) = 0 if x < γ1,i/c. A measure 0 of agents have precisely

x = γ1,i/c, so in that case, any choice of vi(x, y) is optimal.

Next, consider type (x, y) with y ∈ (y0,i, y
∗
i ]. The first derivative of the Lagrangian with respect to

vi(x, y) is

(xλiby − γ1,i + γ3,iαx)f(x, y),
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where the first term is the private benefit to the agent, the second term is the selection supply cost, and

the third term captures the externality of lowering the equilibrium aggregate interaction probability. Again,

the second derivative is 0. Since y > y0,i, we know that λiby + γ3,iα > 0, which implies that the first

derivative is strictly increasing in x. It follows that the policy maker optimally sets vi(x, y) = 1 if x >

γ1,i/(λiby+γ3,iα) and optimally sets vi(x, y) = 0 if the opposite holds. A measure 0 of agents have precisely

x = γ1,i/(λiby + γ3,iα), so any choice of vi(x, y) for such an x is optimal.

Finally, consider type (x, y) with y ⩽ y0,i. The first derivative of the planner’s Lagrangian with respect

to vi(x, y) is the same as in the previous case with y ∈ (y0,i, y
∗
i ], and again the second derivative is 0. Since

y ⩽ y0,i, we know that λiby + γ3,iα ⩽ 0. Since x ⩾ 0 and γ1,i > 0, it follows that the first derivative is

strictly negative. Thus, the policy maker optimally sets vi(x, y) = 0.

We can now complete the proof of Proposition 1 with the following lemma.

Lemma B.3. For i ∈ {s, f}, the Lagrange multiplier on the equilibrium aggregate interaction rate constraint,

γ3,i, is strictly positive.

Proof. From Lemma B.2, we can write the policy maker’s Lagrangian as

Li =Wi + γ1,i

(
β −

∫ 1

0

∫ 1

gi(y)

f(x, y) dxdy

)
+ γ2,i

(
y∗i − c

λib

)

+ γ3,i

(
λi − α

∫ y∗
i

0

∫ gi(y)

0

xf(x, y) dxdy

)
,

and welfare as

Wi = −
∫ y∗

i

0

∫ gi(y)

0

xλibyf(x, y) dxdy −
∫ 1

y∗
i

∫ g∗
i

0

xcf(x, y) dxdy.

We will need to use the First Order Conditions (FOC) for y∗i and λi, so we begin with the derivative of the

Lagrangian with respect to each:

∂Li

∂y∗i
=

∫ g∗
i

0

xcf (x, y∗i ) dx−
∫ gi(y

∗
i )

0

(λiby
∗
i + γ3,iα)xf (x, y

∗
i ) dx−

∫ g∗
i

gi(y∗
i )
γ1,if (x, y

∗
i ) dx+ γ2,i,

where the first term is the reduction in isolation costs, the second term is the increase in costs associated

with interaction, the third term is the cost (or benefit, depending on whether gi (y∗i ) < g∗i ) of the change in

the quantity of agents selected implied by a discontinuity in gi(·) at y∗i , and the fourth term is the Lagrange

multiplier on the incentive compatibility constraint for the interaction threshold (which is potentially non-

zero only if i = s); and

∂Li

∂λi
= −

∫ y∗
i

0

∫ gi(y)

0

xbyf(x, y) dxdy + γ2,i
c

λ2i b
+ γ3,i,
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where the first term is the cost of increased risk for interacting agents, the second term is the effect on the

incentive compatibility constraint for the individually optimal interaction threshold (for i = s), and the third

term is the Lagrange multiplier on the equilibrium aggregate interaction probability constraint.

The necessary FOC for each of λi and y∗i is that the derivative of the Lagrangian with respect to each is

0. We saw in Lemma 1 that λs and y∗s are strictly positive, and in the proof at the beginning of this section

that λf and y∗f are strictly positive. Moreover, neither λi nor y∗i has an upper bound.

For the first-best, γ2,f = 0, so the FOC for λf yields

γ3,f =

∫ y∗
f

0

∫ gf (y)

0

xbyf(x, y) dxdy, (B.1)

which is strictly positive because y∗f > 0 and gf (·) > 0. For the second-best, plugging in the incentive

compatibility constraint, λsby∗s = c, into the FOC for y∗s yields

γ2,s = γ3,sα

∫ g∗
s

0

xf (x, y∗s ) dx−
∫ g∗

s

gs(y∗
s )

((λsby
∗
s + γ3,sα)x− γ1,s) f (x, y

∗
s ) dx. (B.2)

It must be that λsby∗s + γ3,sα = γ1,s/gs (y
∗
s ) or λsby∗s + γ3,sα < γ1,s/gs (y

∗
s ) and gs(y

∗
s ) = 1 because if

λsby
∗
s + γ3,sα ̸= γ1,s/gs (y

∗
s ), then the first term in the minimum in the definition of gs(y) in Lemma B.2

must be strictly greater than 1 at y∗s . Hence for all x, (λsby∗s + γ3,sα)x ⩽ γ1,sx/gs (y
∗
s ), and if g∗s > gs (y

∗
s ),

then the inequality is an equality. Thus whether g∗s > gs (y
∗
s ) or the opposite holds, it follows that

γ2,s ⩽ γ3,sα

∫ g∗
s

0

xf (x, y∗s ) dx− γ1,s

∫ g∗
s

gs(y∗
s )

(
x

gs (y∗s )
− 1

)
f (x, y∗s ) dx.

Plugging into the FOC for λs yields

γ3,s ⩾

∫ y∗
s

0

∫ gs(y)

0
xbyf(x, y) dxdy + c

λ2
sb
γ1,s

∫ g∗
s

gs(y∗
s )

(
x

gs(y∗
s )

− 1
)
f (x, y∗s ) dx

c
λ2
sb
α
∫ g∗

s

0
xf (x, y∗s ) dx+ 1

. (B.3)

The first term in the numerator is strictly positive because y∗s > 0 and gs(·) > 0. The second term in the

numerator is positive: if g∗s > gs (y
∗
s ), then for all x ∈ (gs (y

∗
s ) , g

∗
s ], x/gs (y∗s ) > 1, and if g∗s < gs (y

∗
s ), then

flip the limits of the integral, multiply the integrand by negative one, and note that for all x ∈ [g∗s , gs (y
∗
s )),

x/gs (y
∗
s ) < 1. It follows that γ3,s > 0.

B.3 Proof of Corollaries 1, 2, and 3

It is convenient to prove the three corollaries before proving Theorem 1 and Proposition 2. Corollary 1

follows immediately from Definition 4 of an exposure elasticity because gi(y) is constant for all y > y∗i .
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For Corollary 2, first note that gi(·) is continuous and strictly decreasing on [0, y∗i ) and constant on

[y∗i , 1]. In the second-best, γ1,s/ (λsby∗s + γ3,sα) < γ1,s/c because individually optimal interaction implies

that λiby∗s = c, and from Lemma B.3, we know that γ3,s > 0. It therefore follows from the definition of

gs(·) in Proposition 1 that gs (y∗s ) < min {g∗s , 1} because gs(·) is strictly decreasing on [0, y∗s ) and a positive

measure of agents are selected (β > 0). Thus, gs(·) achieves its unique minimum at y∗s . The result for

the first-best holds because plugging the first-best interaction threshold into the definition of gf
(
y∗f

)
yields

gf

(
y∗f

)
= γ1,f/c, which must therefore be strictly less than 1 and equal to g∗f .

For Corollary 3, let T be the tax per interaction, which implies that in the first-best, the private cost

of isolating for a type (x, y) agent is xc and the private benefit is x(λfby + T ). An agent therefore finds

it optimal to interact if y ⩾ (c − T )/(λfb), and finds it optimal to isolate if y < (c − T )/(λfb). Thus, if

y∗f < 1, then the individually optimal interaction policy aligns with the socially optimal interaction policy if

and only if T = γ3,fα. If y∗f ⩾ 1, then T = 0 works as well because γ3,f > 0 from Lemma B.3, which implies

that c/(λfb) > 1, i.e., the individually optimal interaction policy for all agents is to interact.

B.4 Proof of Theorem 1 and Proposition 2

We first prove Proposition 2, and then Theorem 1. The expression for γ3,f follows immediately from equation

(B.1) in the proof of Lemma B.3. The expression for γ3,s follows from inequality (B.3) in the proof of Lemma

B.3 because the proof shows the inequality holds with equality as long as gs (y∗s ) < 1, which is the case from

the proof of Corollary 2. If y∗s > 1, then Ω0 = Ω1 = 0 because f (x, y∗s ) = 0. If y∗s ⩽ 1, then Ω0 > 0 because

gs (y
∗
s ) > 0, and Ω1 > 0 because gs (y∗s ) < g∗s by Corollary 2 and g∗s ⩽ γ1,s/c.

Now, for Theorem 1, plugging in the expression for γ3,fα into (8) for εi(y) yields the expression in the

theorem, which is strictly greater than −1 because γ3,f > 0. For the second-best, (8) shows that εs(y) > −1

because γ3,s > 0. Plugging in the expression for γ3,sα yields the other inequality because Ω0 ⩾ 0 and Ω1 ⩾ 0.

The inequality is strict if y∗s ⩽ 1 because in that case Ω1 > 0.

B.5 Proof of Proposition 3

First, the same argument as in the proof of Lemma 1 (except with the cost and benefit of isolation flipped)

shows that the individually optimal interaction threshold is y∗s . In this case, y∗s > 0 because as y goes to 0,

the benefit of interaction goes to 0, but the cost of interaction remains at xc. Moreover, the same argument

as in the beginning of the proof of Proposition 1 (except with the cost and benefit of isolation flipped) shows

that in the first-best selection policy, agents interact if and only if y > y∗f . Note that we may now have that

the definition of y∗f is strictly negative in which case all agents interact.

Next, the Lagrange multiplier on the supply constraint, γ1,i, is strictly positive. If there is a strictly
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positive measure of non-selected interacting agents, then they can be selected for a strictly positive benefit

without any effects on other agents or other agents’ individually optimal interaction choices. Thus, welfare

strictly increases with more supply. If there is not a strictly positive measure of non-selected interacting

agents, then since β < 1, there must be a strictly positive measure of non-selected isolating agents. Holding

fixed interaction choices, selecting some of these agents gives them a strictly positive private benefit, and

generates spillovers to selected interacting agents that yield a positive benefit. Moreover, allowing interaction

choices to respond in the second-best, the equilibrium aggregate interaction probability can only increase

because all non-selected agents are isolating. In that case, the agents who change their behavior are better off

because their value of isolating remains the same, and the increase in the equilibrium aggregate interaction

probability generates spillovers to interacting agents that yield a positive benefit. Thus, welfare strictly

increases with more supply.

Now, we can write the Lagrangian as

Li =Wi + γ1,i

(
β −

∫ 1

0

∫ 1

0

vi(x, y)f(x, y) dxdy

)
+ γ2,i

(
y∗i − c

λib

)
+ γ3,i

(
α

∫ 1

0

∫ 1

0

xf(x, y) dxdy − α

∫ y∗
i

0

∫ 1

0

(1− vi(x, y))xf(x, y) dxdy − λi

)
,

and welfare as

Wi =

∫ 1

0

∫ 1

0

xλibyf(x, y) dxdy −
∫ y∗

i

0

∫ 1

0

(1− vi(x, y))xλibyf(x, y) dxdy

−
∫ 1

y∗
i

∫ 1

0

(1− vi(x, y))xcf(x, y) dxdy,

where γ2,f = 0, i.e., the incentive compatibility constraint for the individually optimal interaction threshold

need not hold in the first-best. Comparing the expressions for the Lagrangian and welfare to equations (6)

and (7) for the Lagrangian and welfare, respectively, in the negative externalities / strategic substitutes

case, we can see that there are three differences: an additional positive term multiplying γ3,i, an additional

positive term in welfare, and a negative sign in front of λi in the equilibrium aggregate interaction probability

constraint. The changes don’t affect the derivative of the Lagrangian with respect to vi(x, y), so the proof

of Lemma B.2 holds, adapted for the case positive externalities / strategic complements case. Thus, all that

remains to show Proposition 3 is that γ3,i > 0.

To see that γ3,i > 0, first take the derivative of the Lagrangian with respect to λi:

∂Li

∂λi
=

∫ 1

0

∫ 1

0

xbyf(x, y) dxdy −
∫ y∗

i

0

∫ gi(y)

0

xbyf(x, y) dxdy + γ2,i
c

λ2i b
− γ3,i. (B.4)
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We must have λi > 0 because selected agents interact and there is a strictly positive measure of selected

agents, i.e., β > 0. It follows that the derivative equals 0. In the first-best, γ2,f = 0 and so γ3,f > 0 because

the second integral in the derivative equals the first if and only if all agents are isolating and non-selected,

which cannot be the case given a strictly positive measure of selection supply, i.e., β > 0.

To see that γ3,s > 0, we first prove the following lemma, which states that if strategic complementarities

are sufficiently strong, then there is a better individually optimal equilibrium conditional on the selection

policy, or there is a better selection policy.

Lemma B.4. Under the optimal selection policy v(·, ·), in the policy maker’s preferred individually optimal

equilibrium
c

λ2b
α

∫ 1

0

(1− v(x, y∗))xf(x, y∗)dx < 1.

Proof. First, we show that given any selection policy, in the policy maker’s preferred equilibrium, the in-

equality in the lemma holds weakly. The policy maker’s preferred equilibrium—the one with the highest

welfare—is the one with the lowest interaction threshold y∗ because each agent receives the maximum of

their value of isolating and interacting, and comparing two equilibria, the value of isolating is the same, but

the value of interacting is higher in the one with a lower y∗.

Define a function Y1 : R+ → R++ so that if non-selected agents with payoff type greater than y interact,

then based on the resulting equilibrium aggregate interaction probability λ, agents with payoff type greater

than Y1(y) > 0 prefer to interact, i.e., Y1(y) = c/(λb). There is an equilibrium with interaction threshold

y∗ > 0 if and only if Y1(y∗) = y∗.

We want to show that at the lowest y∗ with Y1(y
∗) = y∗, the inequality in the lemma holds. The

inequality trivially holds if y∗ > 1 because then f (·, y∗) = 0, so suppose that is not the case. Note that

Y1(·) is continuous and always has a left derivative. It follows that at the lowest equilibrium y∗, the left

derivative of Y1(·) is weakly less than 1; otherwise, there exists a y < y∗ such that Y (y) < y, which implies

an equilibrium less than y∗ by the Intermediate Value Theorem because Y1(0) > 0. Thus, inequality in the

lemma holds weakly because the left derivative of Y1(·) at y is

c

λ2b
α

∫ 1

0

(1− v(x, y))xf(x, y)dx.

Next, to complete the proof of the lemma, we show that if the inequality in the lemma holds with

equality, then there is a selection policy such that in the policy maker’s preferred equilibrium, welfare is

strictly higher. In particular, the policy maker can shift selection near y∗ away, some to agents with higher y

to save on interaction costs, and some to agents with lower y so that if the interaction threshold falls below

y∗, the equilibrium aggregate interaction probability is higher and the fall is self-fulfilling.

As an intermediate step, the selection policy is optimal only if (up to a measure 0 of agents), it is an
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x-policy below y∗ with a strictly positive threshold function, and does not select agents above y∗. If it is

not an x-policy below y∗, then there exists a y1 < y∗ and x1 < x2 such that there are strictly positive

measures of selected agents with y < y1 and x < x1, and of non-selected agents with y < y1 and x > x2.

Consider unselecting a measure δ of agents in the first group, and selecting agents in the second group

instead, which changes the interaction threshold in the policy maker’s preferred equilibrium. Since the

inequality in the lemma holds with equality in the policy maker’s preferred equilibrium under the initial

selection policy, it follows that as δ goes to 0, the decrease in the interaction threshold in the policy maker’s

preferred equilibrium from the change becomes arbitrarily large relative to δ. Thus, the change improves

welfare because the increase in the value of interaction is arbitrarily large relative to the change in value

from possibly selecting agents with a lower average y. A similar argument shows that the optimal selection

policy cannot select agents above y∗. Finally, the threshold above which the x-policy selects agents must be

strictly positive because otherwise the left-hand side of the inequality in the lemma is 0.

Now, it follows that there exists an M > 0 such that for sufficiently small δ > 0, there is more than a

measure Mδ of selected agents between y∗− δ and y∗. Moreover, there exists an x1 > 0 and ψ > 0 such that

for sufficiently small δ, the policy maker can unselect agents with y ∈ (y∗ − δ, y∗), shift a share 1−ψ of that

selection to agents with y > y∗, and shift the remaining share ψ of that selection to agents with y < y∗ − δ,

so that all selected agents have x > x1, and so that the integral of x across selected agents with y > y∗ − δ

is unchanged. Define a function Y2 : R+ → R++ so that if the policy maker uses δ to make the specified

change, and non-selected agents with payoff type greater than y∗ − δ interact, then based on the resulting

equilibrium aggregate interaction probability λ, agents with payoff type greater than Y2(δ) > 0 prefer to

interact, i.e., Y2(δ) = c/(λb). If there exists a δ > 0 so that Y2(δ) ⩽ y∗− δ, then welfare must be higher after

the specified change: among those who were already interacting with y > y∗ − δ (by choice or by selection),

total interaction costs are unchanged and the value of interaction is higher; among everyone else, some are

the same if they were not interacting and continue not to, some are strictly better off if they switched from

not interacting to interacting, and some are strictly better off if they are newly selected.

As δ converges to 0, Y2(δ) converges to less than

y∗ − δ
c

λ2b
α

(
ψMx1 +

∫ 1

0

(1− v(x, y∗))xf(x, y∗)dx

)
,

where the terms in parentheses are the increase in the equilibrium aggregate interaction probability first due

to the increase in selection below y∗ − δ, and second due to the increase in interaction net of the reduction

in selection among agents with y ∈ (y∗ − δ, y∗). Since the inequality in the lemma holds with equality, it

follows that for sufficiently small δ > 0, Y2(δ) < y∗ − δ, which competes the proof of the lemma.

Now, since y∗s > 0 it follows that the derivative of the Lagrangian with respect to y∗s , which is the same
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as in the negative externalities / strategic substitutes case, must be 0. Plugging equation (B.2) for γ2,s into

the derivative of the Lagrangian with respect to λs, equation (B.4), set equal to 0 yields

γ3,s =

∫ 1

0

∫ 1

0
xbyf(x, y) dxdy −

∫ y∗
s

0

∫ gs(y)

0
xbyf(x, y) dxdy − c

λ2
sb

∫ g∗
s

gs(y∗
s )
(xc− γ1,s)f (x, y

∗
s ) dx

1− c
λ2
sb
α
∫ gs(y∗

s )

0
xf (x, y∗s ) dx

, (B.5)

where we use the individually optimal interaction threshold λsby∗s = c. The difference of the first two integrals

in the numerator is strictly positive because otherwise λs = 0. The third term in the numerator (including

the negative sign) is positive: if g∗s ⩾ gs (y
∗
s ), then since γ1,s/c ⩾ g∗s , it follows that for all x ∈ [gs (y

∗
s ) , g

∗
s ],

γ1,s ⩾ xc; if g∗s < gs (y
∗
s ), then flip the endpoints of the integral, multiply the integrand by -1, and note that

it must be that g∗s < 1, which implies that γ1,s/c = g∗s , and so for all x ∈ [g∗s , gs (y
∗
s )], γ1,s ⩽ xc. Thus,

the numerator on the right-hand side of equation (B.5) is strictly positive. Finally, by Lemma B.4, the

denominator on the right-hand side of equation (B.5) is strictly positive. Thus, γ3,s > 0.

B.6 Proof of Theorem 2, Proposition 4, and Corollaries 4, 5, and 6

Given Proposition 3, the proofs follow the same arguments as the proofs of Theorem 1, Proposition 2, and

Corollaries 1, 2, and 3.
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